Winter Canola and Camelina Variety Testing Trials

SCOT HULBERT1, WILLIAM SCHILLINGER1, AND DAVID HUGGINS2
1. DEPARTMENT OF CROP AND SOIL SCIENCES, WSU
2. USDA-ARS LAND MANAGEMENT AND WATER CONSERVATION RESEARCH UNIT, PULLMAN, WA

Canola and camelina have good potential as rotation crops for wheat in Eastern Washington. Stand establishment of winter canola can be difficult, especially when emerging through hot surface soils or following emergence with hot air temperatures. To examine the adaptation of winter canola varieties to various production regions, we are testing varieties from both local and international breeding programs in multiple cropping systems. We planted 64 winter canola varieties, including all those entered in the National Winter Canola Variety Trials, at Othello (irrigated), Ralston (summer fallow), Reardan (direct seeded on chem fallow), and Pullman (direct seeded into spring wheat stubble). Good stands were easily established with most varieties at Othello and Reardan, where planting depth was shallow and moisture was plentiful. Alternatively, none of the varieties emerged well through the deep summer fallow tillage mulch with limited soil moisture at Ralston. The Pullman site was planted after spring wheat harvest into dry soil and did not germinate until after October 3 when the first significant rain occurred. A hard frost on October 20 killed the seedlings of all the varieties in the trial. Altering furrow depths and residue levels did not noticeably increase seedling survival at this site.

Spring or fall planted camelina has advantages over winter canola in stand establishment. Available varieties are typically spring planted, but fall plantings of experimental lines at Pullman and Lind were not damaged by early frosts or winter temperatures. Spring plantings can be drilled in like canola if planted shallow ~1/2’ or broadcast in late winter or early spring. Yield potential is not as high as winter canola in high rainfall regions but preliminary data suggest camelina may perform well in lower rainfall environments. Yields of ~1400 lbs/acre were achieved with several varieties at Ralston when planted in the spring after a previous spring wheat crop. A trial to compare 18 spring varieties has been planted at Lind, Lacrosse and Pullman in 2008.

Winter Canola as a Rotation Crop in the Low and Intermediate Precipitation Zones

WILLIAM SCHILLINGER1, ANN KENNEDY2, TIMOTHY PAULITZ3, DOUG YOUNG4, AND TIM SMITH1
1. DEPARTMENT OF CROP AND SOIL SCIENCES, WSU
2. USDA-ARS LAND MANAGEMENT AND WATER CONSERVATION RESEARCH UNIT, PULLMAN, WA
3. USDA-ARS ROOT DISEASE AND BIOLOGICAL CONTROL RESEARCH UNIT, PULLMAN, WA
4. SCHOOL OF ECONOMIC SCIENCES, WSU

Multiple-year experiments are being conducted in the low and intermediate precipitation regions to document the rotation benefits of winter canola (WC) in wheat-based cropping systems. Farmers in both the low and intermediate precipitation zones have reported economically viable winter canola yields. In addition, some farmers have reported that the winter wheat (WW) crop following winter canola often has less disease and weed pressure and produces considerably higher grain yield compared to monoculture winter wheat in the traditional 2-year WW-summer fallow (SF) rotation or spring cereal (either wheat or barley) in the 3-year WW-SW-SF rotation. Additionally, it has been observed that water runoff from frozen agricultural soils does not occur following a winter canola crop, presumably because the deep tap root provides open channels for water to penetrate through the frozen surface soil layer. Neither the boost in subsequent wheat grain yield or the soil physical, biological, or pathological factors, that may account for better water infiltration and increased wheat yield as affected by having winter canola in the

Replicated strips of winter canola and winter wheat at the Ritzville study site located on the Ron Jirava farm.