Farming with the Wind

Best Management Practices For Controlling Wind Erosion and Air Quality On Columbia Plateau Croplands

Lead Author, and Editor
Robert I. Papendick, Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164

Contributing Authors and Reviewers
Alan J. Busacca, Department of Crop and Soil Sciences, Washington State University
Candis S. Claiborn, Department of Civil and Environmental Engineering, Washington State University
Edwin Donaldson, Department of Crop and Soil Sciences, Washington State University
David W. Evans, Irrigated Agriculture Research and Education Center, Washington State University
Robert L. Gillespie, Cooperative Extension, Washington State University, Ephrata, Washington
John Holmes, Franklin Conservation District, Pasco, Washington
Mike Klungland, Natural Resources Conservation Service, Ritzville, Washington
Brian K. Lamb, Department of Civil and Environmental Engineering, Washington State University
David A. Lauer, Benton County Clean Air Authority, Richland, Washington
Myron Molnau, Department of Agricultural Engineering, University of Idaho
Kathleen M. Painter, Department of Agricultural Economics, Washington State University
William L. Pan, Department of Crop and Soil Sciences, Washington State University
Keith E. Saxton, USDA/Agricultural Research Service, Pullman, Washington
David Roseberry, Grower, Prosser, Washington
William F. Schillinger, Cooperative Extension, Washington State University, Ritzville, Washington
Roger J. Veseth, Cooperative Extension, Washington State University, and the Department of Plant, Entomological and Soil Sciences, University of Idaho
Donald J. Wysocki, Oregon State University, Pendleton, Oregon
Douglas L. Young, Department of Agricultural Economics, Washington State University
Frank L. Young, USDA/Agricultural Research Service, Pullman, Washington
BMP Working Committee
Robert L. Gillespie, Cooperative Extension, Washington State University, Ephrata, Washington
Mike Klungland, Natural Resources Conservation Service, Ritzville, Washington
William F. Schillinger, Cooperative Extension, Washington State University, Ritzville, Washington
Roger J. Veseth, Cooperative Extension, Washington State University, and the Department of Plant, Entomological and Soil Sciences, University of Idaho
Donald J. Wysocki, Oregon State University, Pendleton, Oregon
Robert I. Papendick, Department of Crop and Soil Sciences, Washington State University, Committee Chair

Collaborating Institutions and Agencies
Washington State University
University of Idaho
Oregon State University
USDA Agricultural Research Service
USDA Natural Resources Conservation Service
USDA Cooperative States Research, Education and Extension Service
US Environmental Protection Agency
Washington State Department of Ecology
Washington Wheat Commission
Washington Association of Wheat Growers
Oregon Wheat Growers League
Washington State Potato Commission
Washington State Conservation Commission
Conservation District Alliance, Ephrata, Washington
Benton County Clean Air Authority, Richland, Washington
Air Pollution Control Authority, Spokane, Washington

Support
Funding for preparation of this Handbook has been provided by Washington State University, Washington State Department of Ecology, Washington Wheat Commission, USDA Agricultural Research Service, USDA Cooperative States Research, Education and Extension Service, and the US Environmental Protection Agency. The contents and views expressed in this document are those of the authors and reviewers and do not necessarily reflect the policies and positions of the supporting and collaborating institutions and agencies.

Special Thanks and Acknowledgments
The Contributors gratefully acknowledge the editorial assistance provided by James F. Parr, USDA/Agricultural Research Service (retired) of Bellingham, Washington, for his suggestions and careful review of this Handbook. Their sincere thanks and appreciation are also extended to Kelly Newell, Project Assistant, for her helpful suggestions and professional assistance in the preparation of this Handbook.

The information provided in this Handbook is for educational purposes only. References to commercial products or trade names do not constitute an endorsement by the Collaborating Institutions and Agencies, and do not imply discrimination against other similar products.
Contents

Chapter 1

Introduction: Why The Need For This Handbook? 7
- Air Quality and Windblown Dust 7
- Farmers are the Problem Solvers 7
- Best Management Practice Concepts and Strategies for Controlling Windblown Dust 8
- Sources of Information and Suggested Reading 8

Chapter 2

Some Facts about Wind Erosion and Its Control 11
- Mechanics of Wind Erosion 11
- Measurement of Wind Erosion 12
- Prediction of Wind Erosion 13
- Principles of Control 14
- Sources of Information and Suggested Reading 14

Chapter 3

Profile of the Columbia Plateau 17
- Wind Characteristics 18
- Soil Erodibility 19
- Crop Residue and Green Cover Production 20
- Sources of Information and Suggested Reading 22

Chapter 4

Managing Soil Cover and Roughness 25
- Effectiveness of Soil Cover and Roughness for Controlling Wind Erosion 25
- Measuring and Estimating Surface Cover 26
- Measuring and Estimating Surface Roughness 28
- Residue Reductions by Implements and Tools 28
- Maximizing Residue Production in Fallow Systems 29
- Tillage Effects on Surface Roughness 29
- Sources of Information and Suggested Reading 30

Chapter 5

Best Management Practices for Dryland Farms 33
- Wheat-Fallow Systems 33
- Alternative Management Systems 38
- Conservation Tillage Weed Management Systems 41
- Strip Cropping for Wind Erosion Control 43
- Conservation Reserve Program 44
- Sources of Information and Suggested Reading 48

Chapter 6

Best Management Practices for Irrigated Farms 51
- Main Problems in Need of Attention 51
- Management of Cover and Roughness 51
- Vegetative Barriers and Strip Cropping 56
- Sources of Information and Suggested Reading 57

Chapter 7

Best Management Practices for both Dryland and Irrigated Farms 59
- Tree Windbreaks 59
- Dryland Windbreaks Using Fabric Mulch Technology 60
- Preventive Action and Emergency Measures for Controlling Wind Erosion 60
- Irrigation for Temporary Erosion Control 62
- Sources of Information and Suggested Reading 63

Chapter 8

Economic Considerations in Wind Erosion Control 65
- Economics of Conservation Cropping Systems for Dryland and Irrigated Regions 66
- Sources of Information and Suggested Reading 67

Chapter 9

Putting It Together: Expected Outcomes from Using Best Management Practices 69
- Soil Quality Benefits from Using BMPs 69
- Impacts of Using BMPs on Air Quality 70
- Sources of Information and Suggested Reading 72
Years of intensive cultivation by itself has depleted soils on the Columbia Plateau of organic matter and plant nutrients. Uncontrolled wind erosion accelerates the process. Managing eroded soil for the purpose of improving soil quality is an extremely slow and expensive process. It makes far more practical and economic sense to apply best management practices that will prevent wind erosion and soil quality decline than to attempt to reclaim soil after the damage is done.
All of the BMPs presented in this Handbook aim to control wind erosion and dust emissions, and over the long-term, improve soil quality through the use of conservation practices such as cover crops, surface residue management, and reduced tillage methods. Practices that avoid the use of implements such as moldboard plows and discs that bury crop residues or green cover, and that invert and mix the soil, will not only help to control wind erosion but will also slow the oxidation of soil and biomass carbon to carbon dioxide.